If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-176=0
a = 1; b = 4; c = -176;
Δ = b2-4ac
Δ = 42-4·1·(-176)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12\sqrt{5}}{2*1}=\frac{-4-12\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12\sqrt{5}}{2*1}=\frac{-4+12\sqrt{5}}{2} $
| 16=8v-6v | | 5.8g+3=3.8g+13 | | 7²x+1²x=5+9²x | | 600+100x=25(30+x) | | (3d+3)=7+6d. | | 48x^2+5x-108000=0 | | 8x-35x=2 | | 160=5x+10 | | F(x)=3x^-12 | | 7x+1/x-2+3/x=-6/x^2-2x | | 5x+2=235 | | 6x+24x-1=26 | | 5/9y=-9 | | /2x+15-x=6 | | k-2=19 | | 5v=30,v= | | –2−g=–2g | | 7÷(8.5-5)=z | | –5p=–8p+9 | | 16=t+6 | | –9b−8=–10b | | r+(3.2÷2)=5.5 | | 8x-3=6x+17 | | r+(3.2÷2)=55 | | 15.5=2p+3.5 | | y-312/20=27 | | 3+w10+w+5=0 | | 31(u+5)=992 | | q-678/8=30 | | 3x2+15x–21=0 | | 12x-19=4x-1 | | p+289/31=18 |